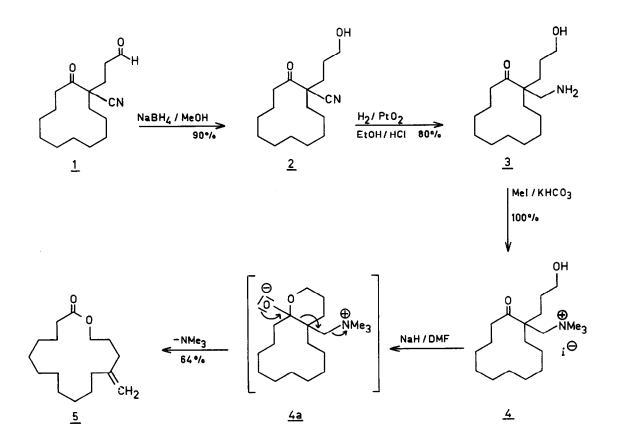
RING ENLARGEMENT BY FRAGMENTATION REACTION: TRANSFORMATION OF 2-AMINOMETHYL-2-(3-HYDROXYPROPYL)CYCLODODECANONE TO 12-METHYLENE-15-PENTADECANOLIDE

Branimir Milenkov, Armin Guggisberg, Manfred Hesse^{*} Organisch-chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

<u>Summary:</u> A fragmentation reaction was used to transform 2-aminomethyl-2-(3hydroxypropyl)cyclododecanone to 12-methylene-15-pentadecanolide by ring enlargement.


In preceeding papers we have reported on ring enlargement reactions in which an intramolecular anion (carbanion¹, $R-\overline{O}|^{\Theta_2}$, $R^1R^2\overline{N}|^{\Theta_3}$) attacked an internal ketone group by formation of an alkoholate, a half acetal anion, and an amino half acetal anion, respectively. In the second step the ring enlargement takes place by charge delocalization from $R-\overline{O}|^{\Theta}$ to an electron withdrawing group (e.g. $-NO_2^{-1}$, $-SO_2R^4$, $-CN^5$):

$$\Theta | \underbrace{\overset{\frown}{\underline{0}}}_{-} CR^{1}R^{2} - \underbrace{CR^{3}R^{4}}_{+} - X \longrightarrow 0 = CR^{1}R^{2} + \overset{\Theta}{-}CR^{3}R^{4} - X$$

In case of replacement of -X by $-CH_2-Y$ (Y stands for a leaving group) the ring enlargement will proceed via fragmentation reaction. The following report describes the realization of this reaction type.

The aldehyde group in 1-(2-formylethyl)-2-oxocyclododecane-1-carbonitrile (<u>1</u>) prepared by Michael reaction of 2-oxocyclododecane-1-carbonitrile and acrylaldehyde⁵ was reduced with NaBH₄/MeOH selectively⁶ to 1-(3-hydroxypropyl)-2oxocyclododecane-1-carbonitrile (<u>2</u>)⁷. The reduction of the nitrile group in <u>2</u> was achieved by catalytic hydrogenation [3 at H_2/PtO_2 in EtOH/conc.HCl-H₂O $(v/v \ 50:1)$] to give 2-aminomethyl-2-(3-hydroxypropyl)cyclododecanone (3, 80% yield). The latter was transformed by MeI in KHCO₃/MeOH to [2-(3-hydroxypropyl)-1-oxocyclododecyl]-methylene-trimethylammonium-chloride (4). Addition of 2 equ. of NaH to a solution of 4 in DMF produced 12-methylene-15-pentadecanolide (5) in 64% yield⁸. The reaction was carried out in the presence of a 4 Å molecular sieves in order to trap the crystal water of 4. The reaction was performed under Ar atmosphere at 25°C for 1.5 h. Prolongation of the reaction time lowered the yield of 5, but 4 was still detectable.

Though reactions mentioned at the beginning of this paper seem to require cis configuration of $-\overline{Q}|^{\Theta}$ and NO_2^{-1} and $-\overline{Q}|^{\Theta}$ and $-SO_2\phi^9$ in the intermediates we believe that during the transformation of $\underline{4} \rightarrow \underline{5}$ the known stereochemical mode of a fragmentation reaction takes place. We can not exclude that one part of the intermediate $\underline{4a}$ exists in the stereoelectronic not favored configuration (cis arrangement of $-\overline{Q}|^{\Theta}$ and $-CH_2-N(Me)_{\pi}^{\Theta}^{+})$. An electrostatic interaction of the both

groups could prevent the equilibrium between these configurations. This could be responsible for reisolation of 4 after the reaction.

Another synthetic route to macrolides by fragmentation reactions was described earlier¹⁰.

Acknowledgement. The support of this work by the Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung is gratefully acknowledged.

References and Notes

Part of the PhD Thesis of B.M., fellow ob Bulgarian Academy of Sciences, Institute of Organic Chemistry, Sofia.

¹ Y. Nakashita and M. Hesse, *Helv.Chim.Acta* 66, 845 (1983).

² K. Kostova and M. Hesse, *Helv.Chim.Acta* 67, 1713 (1984).

³ R. Wälchli, St. Bienz, and M. Hesse, *Helv. Chim. Acta* 68, 484 (1985).

⁴ R.C. Cookson and P.S. Ray, *Tetrahedron Lett.* 1982, 3521.

- ⁵ B. Milenkov, M. Süsse, and M. Hesse, *Helv.Chim.Acta* 68, 2115 (1985).
- ⁶ J. Becker and G. Ohloff, *Helv.Chim.Acta* 54, 2889 (1971); B. Milenkov and M. Hesse, in preparation.
- ⁷ The compounds 2 5 were completely characterized [IR, ¹H-NMR, ¹³C-NMR, EI-MS, CI-MS, and combustion analysis (without <u>4</u>)]. The important data are: Compound <u>2</u>: Mp = 71.2 - 71.8°C. IR(CHCl₃): 3520 + 3460 (OH), 2235 (CN), 1720 (CO) cm⁻¹; ¹H-NMR(CDCl₃, 200 MHz): 3.68 (t, J = 6 Hz, -CH₂OH), 2.86 - 2.72 (m, -CH₂CO) ppm; ¹³C-NMR(CDCl₃, 50 MHz): 204.0 (CO), 120.2 (CN), 61.9 (CH₂OH), 55.4 (quart. C), 35.2 - 20.9 ppm (12 CH₂). EI-MS (rel.%): m/z 265 (4, M⁺·), 236 (4), 192 (9), 166 (9), 150 (11), 136 (14), 122 (15), 112 (89), 98 (40), 84 (24), 67 (44), 55 (82), 41 (100).

Compound <u>3</u>: Mp = 104 - 105°C; IR(KBr): 3350, 1695 cm⁻¹; ¹H-NMR: 3.65 (t, J = 6 Hz), 3.07 + 2.74 (2 d, J = 13.2, $-CH_2NH_2$), 2.84 - 2.61 (m) ppm; ¹³C-NMR: 214.8, 62.8, 56.0, 42.6 (CH_2NH_2), 33.2 - 20.2 ppm (12 CH_2); EI-MS: m/z 269 (1, M⁺.), 252 (1), 240 (13), 123 (5), 116 (16), 98 (15), 84 (21), 70 (14), 55 (97), 41 (100).

Compound <u>4</u>: Mp = 95°C (decomp.); IR(KBr): 3380, 1703 cm⁻¹; ¹³C-NMR (25°C): 212.14 + 212.11 + 212.06, several signals are splitted; (50°C): 212.3, 67.4 (CH₂N⁺), 60.9 (CH₂OH), 56.7 ppm (CH₃); CI-MS (isobutane): m/z 298 ([M+1-CH₃I]⁺). Compound <u>5</u>: Oil, musk-like smell; IR(film): 1737 (lactone), 1643 + 888 (= CH₂) cm⁻¹; ¹H-NMR: 4.73 (d with fine structure, J = 9 Hz), 4.16 (t, J = 5.6, -CH₂-O), 2.34 (t, J = 6.6, CH₂COO); ¹³C-NMR: 173.8 (COO), 149.0 (C=CH₂), 109.6 (= CH₂), 63.8 (CH₂-O), 36.2 - 24.9 ppm (12 CH₂). EI-MS: m/z 252 (12, M⁺·), 237 (1), 224 (3), 109 (11), 95 (45), 82 (85), 67 (66), 55 (26), 41 (100).

- ⁸ Determination of the yield by GC in comparison to pentadecanolide (exaltolide) as internal standard.
- ⁹ B.M. Trost and J.E. Vincent, J.Am.Chem.Soc. 102, 5680 (1980).
- ¹⁰ D. Sternbach, M. Shibuya, F. Jaisli, M. Bonetti, and A. Eschenmoser, Angew. Chem. 79, 670 (1979), Angew.Chem., Int.Ed.Engl. 18, 634 (1979); M. Shibuya, F. Jaisli, and A. Eschenmoser, Angew.Chem. 79, 672 (1979); Angew.Chem., Int. Ed.Engl. 18, 636 (1979).

(Received in Germany 22 October 1986)